49 research outputs found

    Durable response to palbociclib and letrozole in ovarian cancer with CDKN2A loss.

    Get PDF
    Alterations of the Retinoblastoma (Rb) pathway are frequent in ovarian cancer, typically resulting from CDKN2A down-regulation, CCNE1 amplification, CCND1/2 amplification, and RB1 loss. However, bi-allelic CDKN2A mutation or homozygous deletion is a very rare event, concerning less than 5% of patients.Initial trials with palbociclib in serous ovarian cancer have shown very modest benefit in unselected patient populations, thus underlining the need for a biomarker predicting response. We report the case of a heavily pre-treated patient with a serous ovarian tumor harboring a homozygous deletion of the CDKN2A gene that derived significant, prolonged clinical benefit from palbociclib, a CDK4/6 oral inhibitor, with letrozole. Treatment with palbociclib and letrozole started on February 2018, with an ongoing response after 12 months.In conclusion, homozygous CDKN2A deletion is rare and could be used to predict response to CDK4/6 inhibitors in association with other genomic features. We encourage further trials in this direction

    A biclustering algorithm based on a Bicluster Enumeration Tree: application to DNA microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of rows coherent with groups of columns. This kind of clustering is called <it>biclustering</it>. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed.</p> <p>Methods</p> <p>We introduce <it>BiMine</it>, a new enumeration algorithm for biclustering of DNA microarray data. The proposed algorithm is based on three original features. First, <it>BiMine </it>relies on a new evaluation function called <it>Average Spearman's rho </it>(ASR). Second, <it>BiMine </it>uses a new tree structure, called <it>Bicluster Enumeration Tree </it>(BET), to represent the different biclusters discovered during the enumeration process. Third, to avoid the combinatorial explosion of the search tree, <it>BiMine </it>introduces a parametric rule that allows the enumeration process to cut tree branches that cannot lead to good biclusters.</p> <p>Results</p> <p>The performance of the proposed algorithm is assessed using both synthetic and real DNA microarray data. The experimental results show that <it>BiMine </it>competes well with several other biclustering methods. Moreover, we test the biological significance using a gene annotation web-tool to show that our proposed method is able to produce biologically relevant biclusters. The software is available upon request from the authors to academic users.</p

    HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease.

    Get PDF
    Fructose is a major component of dietary sugar and its overconsumption exacerbates key pathological features of metabolic syndrome. The central fructose-metabolising enzyme is ketohexokinase (KHK), which exists in two isoforms: KHK-A and KHK-C, generated through mutually exclusive alternative splicing of KHK pre-mRNAs. KHK-C displays superior affinity for fructose compared with KHK-A and is produced primarily in the liver, thus restricting fructose metabolism almost exclusively to this organ. Here we show that myocardial hypoxia actuates fructose metabolism in human and mouse models of pathological cardiac hypertrophy through hypoxia-inducible factor 1α (HIF1α) activation of SF3B1 and SF3B1-mediated splice switching of KHK-A to KHK-C. Heart-specific depletion of SF3B1 or genetic ablation of Khk, but not Khk-A alone, in mice, suppresses pathological stress-induced fructose metabolism, growth and contractile dysfunction, thus defining signalling components and molecular underpinnings of a fructose metabolism regulatory system crucial for pathological growth

    A transcript perspective on evolution

    No full text

    Gene Expression Data Analysis Using a Novel Approach to Biclustering Combining Discrete and Continuous Data

    No full text
    corecore